Stress relaxation behavior of low carbon steel at different temperatures *

Author:

Zuo ShanchaoORCID,Wang Danchen,Yang Changqi,Hu Peipei,Bi Ran,Du Bing,Wang Decheng

Abstract

Abstract In this paper, the stress relaxation behavior of Q235 with the initial tensile stress of 70, 85 and 100 MPa were investigated at different temperature. Based on the thermal activation theory, the stress relaxation model of Q235 steel was established, and the physical mechanism and deformation process in the stress relaxation process were revealed. The results shows that with the increase of temperature or initial stress, the nominal activation volume decreases, but the strain rate and the strain rate sensitivity coefficient increase. The repeated stress relaxation test shows that the stress release amount decreases with the increase of the number of cycles, and the higher the temperature, the smaller the effect of the number of cycles. Under the action of temperature and stress, the dislocation starts to move from the disordered bending shape in the original sample to the flat shape gradually. Moreover, the dislocation density decreases to less than 47.8% of the initial sample as the temperature increases and the initial stress decreases. It can be concluded that the dislocation motion is the core mechanism of stress relaxation of Q235 steel.

Funder

National Science and Technology Major Project

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3