Structural, dielectric, impedance, complex modulus, and optical study of Ni-doped Zn(1−x)NixO nanostructures at high temperatures

Author:

Ahmad FiazORCID,Maqsood Asghari

Abstract

Abstract This experiment addressed the effect of Nickel-doped on the dielectric, ac conductivity, and optical properties of pure and doped Zn (1−x) Nix O (x = 0, 3 and 6%) nanostructures. The un-doped and Ni-doped ZnO nanostructures were synthesized using co-precipitation. In this paper, the frequency-dependent dielectric and the electrical conductivity of un-doped and Ni-doped Zn (1−x) Nix O nanostructures were examined at various temperatures ranging from 320 K to 460 K using an LCR meter. For the morphological and optical investigation, the prepared samples were analyzed using field emission-scanning electron microscopy (FE-SEM), and UV visible Spectroscopy was used at room temperature. The dielectric constant ( ε ), dielectric loss ( ε ), tangent loss (tan δ), the real as well as the imaginary part of the impedance against the frequency ranging from 100 Hz to 2 × 106 Hz that declines with increases in frequency at different temperatures ranging from 320–460 K. However, the electrical conductivity ( σ a c ) increased with the increase in frequency was examined. The ac conductivity ( σ a c ) follows Jonscher,s power law that the electrical conductivity is enhanced with increasing doping concentration. The optical transmission area also improved due to an increase in Ni-doping concentration in ZnO. The optical bandgap of pure and Ni-doped ZnO nanostructures is in the range lies 3.30–3.12 eV found that to decrease with the increase in Ni doping concentrations.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3