Ultrasonic non-destructive evaluation study of molecular diffusion bonding of thin copper-aluminum electrode sheets

Author:

Li ShengtaoORCID,Hou Huaishu,Yun Han,Li JinhaoORCID

Abstract

Abstract The weld quality of copper and aluminum thin electrode sheets in molecular diffusion bonding was non-destructively evaluated using ultrasonic resonance techniques. During the welding process, the intermediate layer material nickel diffuses into the molecules of both the copper sheet and aluminum sheet, resulting in the formation of a solid solution phase layer. This leads to a 5-layer structure in the welded body. If there are defects in this solid solution phase layer, it can cause mutations in the ultrasonic resonance signals within the weld body. In order to characterize the weld quality between copper and aluminum sheets, an acoustic attenuation coefficient was introduced. The ultrasonic resonance signals within the weld body of copper and aluminum thin electrode sheets were analyzed under four different welding states. Experimental testing revealed significant differences in acoustic attenuation coefficients among these different welding states. A smaller acoustic attenuation coefficient indicates better welding quality. Therefore, by setting a reasonable threshold for this coefficient, it is possible to effectively evaluate the welding quality of molecular diffusion bonding between copper and aluminum thin electrode sheets.

Publisher

IOP Publishing

Reference26 articles.

1. Research on the temperature performance of a lithium-iron-phosphate battery for electric vehicle;Fuqun;J. Phys. Conf. Ser.,2022

2. Development of diffusion bonding process for high temperature materials;Lee;Key Eng. Mater.,2016

3. Characterization of copper & stainless steel interface produced by electron beam powder bed fusion;Christopher;Mater. Des.,2021

4. The Al-Fe intermetallic compounds and the atomic diffusion behavior at the interface of aluminum-steel welded joint;Yinglong;Metals,2023

5. Molecular dynamics simulation of interface atomic diffusion in ultrasonic metal welding;Shimaalsadat;Int. J. Adv. Manuf. Technol.,2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3