Nanoparticles for organic electronics applications

Author:

He ZhengranORCID,Zhang Ziyang,Bi ShengORCID

Abstract

Abstract Recently, the research in solution-based, small-molecule organic semiconductors has achieved great progress, although their application in organic electronics devices is still restricted by a variety of issues, including crystal misorientation, morphological nonuniformity and low charge-carrier mobility. In order to overcome these issues, hybrid material systems that incorporate both organic semiconductors and additives have been successfully demonstrated to control crystal growth and charge transport of the organic semiconductors. In this work, we first review the recent advances in the charge-carrier mobility of the organic semiconductors, followed by a comparison of the different additives that have been reportedly blended with the semiconductors, including polymeric additives, small-molecule additives and nanoparticle based additives. Then we will review the important nanoparticles employed as additives to blend with solution-based, organic semiconductors, which effectively improved the semiconductor crystallization, enhanced film uniformity and increased charge transport. By discussing specific examples of various well-known organic semiconductors such as 6, 13-bis (triisopropylsilylethynyl) pentacene (TIPS pentacene), we demonstrate the essential relationship among the crystal growth, semiconductor morphology, dielectric properties, and charge-carrier mobilities. This work sheds light on the implementation of nanoparticle additives in high-performance organic electronics device application.

Funder

Dalian University of Technology

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3