Preparation of high wear resistance nickel based WC coating by carefully adjusting interface structure

Author:

Fan LeiORCID,Ou Peng,Rong Ju,Yu XiaohuaORCID

Abstract

Abstract In recent years, many scholars have paid attention to wear-resistant coatings for shield machine cutterheads due to their very high consumption rates. Among these coatings, nickel-based tungsten carbide (Ni-based WC) is one of the best, showing both corrosion resistance and wear resistance. However, to further improve the wear resistance of such coatings, there are still numerous issues that need to be resolved. Herein, a new method, distinct from conventional methods, is presented. Specifically, the brittle phase W2C is not widely regarded as the main wear-resistant phase, but we were surprised to find that careful adjustment of its rigid structure can yield satisfactory results. Experimental results and first-principles simulations have indicated that the friction coefficient and weight loss of a coating with a suitable distribution of W2C are only half of those of a traditional Ni-based WC coating (about five times higher than those of the substrate), which can mainly be attributed to the excellent thermal expansion coefficient and hardness of the W2C phase. As we expected, the surface morphology of the material after wear revealed that the suitable W2C layer has a well-defined friction morphology. We hope to provide new ideas for the study of Ni-based WC coatings in shield machine cutterheads.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3