Study of bifacial photovoltaics with fluorinated ethylene propylene as an anti-reflective layer

Author:

Sivasubramanian Ramsundar,Aravind Vaithilingam ChockalingamORCID,Tan Sin Jin

Abstract

Abstract Bifacial photovoltaics is a type of solar photovoltaics technology that is fast growing in popularity owing to the several advantages it offers. In this study, the inclusion of fluorinated ethylene propylene polymer as one of the constituent materials in bifacial photovoltaic modules under various configurations and its effect on the module’s optical performance was investigated and compared with a commercial bifacial module. Monte Carlo ray tracing was used to conduct the study and the system was analyzed under both non tracking and uniaxial tracking conditions for varying surface albedo values corresponding to an ideal scattering surface, white concrete and sand. The analyses performed under normal incidence condition revelated that the net irradiance on the PV layers varied by as much as 96.0314 W m−2 between the best and worst performing bifacial configurations. Under uniaxial tracking, the top and rear surfaces of the PV modules could cumulatively be subjected to 21.799 kWh of solar irradiation flux per day over a generation window of eleven hours. The proposed changes could offer cost savings of USD 0.0118 per panel per day and up to an additional 5.802 kg of CO2 equivalent offsets per panel per year.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3