Preparation of CuO/HZSM-5 catalyst based on fly ash and its catalytic wet air oxidation of phenol, quinoline and indole

Author:

Liu YongORCID,Lu Hao,Wang Guodong

Abstract

Abstract This work aims to use fly ash and the organic template of tetrapropyl ammonium bromide (TPABr) to synthesize the catalyst carrier of HZSM-5 and prepare the catalyst of CuO/HZSM-5 for catalytic wet air oxidation (CWAO) of phenol, quinoline and indole in aqueous solution. The carrier and the catalyst were characterized by x-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF) and Brunauer-Emmett-Teller (BET) tests and the results indicate HZSM-5 zeolite and CuO/HZSM-5 catalyst have been successfully synthesized. The specific surface area of catalysts with copper loading from 0 to 15% decreased from 310.1 m2 g−1 to 253.8 m2 g−1. The results of catalyst performance showed that the catalyst of CuO/HZSM-5 with copper loading of 10% has the best removal effect on the mixed aqueous solution containing phenol, quinoline and indole. When the total concentrations of phenol, quinoline and indole are 200 mg.l−1 (namely 120 mg phenol·l−1, 60 mg quinoline·l−1 and 20 mg indole·l−1), the catalyst with the copper loading of 10% can remove these organic matters with 100% efficiency after reaction for 4 h at 200 °C and the COD removal rate is more than 75%. Under the same experimental conditions, if the reaction temperature drops to 120 °C, the COD removal rate will rise to 86.2%. The CWAO experiments showed the optimum reaction temperature range for the Cu-10% catalyst is from 120 °C to 150 °C.

Funder

Regional Demonstration Project of Marine Economic Innovation and Development

National Key Research and Development Plan

National Science Foundation of Tianjin

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3