Syntheses, characterization, luminescent and magnetic properties of polymer bifunctional fibers containing terbium complexes and Fe3O4 nanoparticles

Author:

Liu LinaORCID,Wang Kexin,An Xiuyun,Wang YujunORCID,Shan Feng,Liu JiaORCID,Tang Chunjuan,Su JianfengORCID,Qin Ruifei

Abstract

Abstract The combination of electrospun nanofibers and nanoparticles is opening up potential in the field of bifunctional materials. Herein, polystyrene (PS, Mw ≈ 260, 000), polyvinyl pyrrolidone (PVP, Mw ≈1, 300, 000), and poly(methyl methacrylate) (PMMA, Mw ≈ 350, 000) bifunctional fibers containing Tb(acac)3phen complexes (acac: acetylacetone, phen: 1,10-phenanthroline) and Fe3O4 nanoparticles (NPs) were synthesized by single-fluid electrospinning method. The structure of bifunctional microfibers was characterized by x-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), energy spectrum (EDAX) and infrared spectrum (IR). The average diameters of PS, PVP and PMMA bifunctional fibers are 1.65, 0.313 and 0.571 μm, respectively. The TEM images indicated that Fe3O4 NPs were successfully incorporated into bifunctional fibers. No absorption peaks of terbium complexes and Fe3O4 NPs can be seen in the IR spectra of bifunctional fibers. The luminescent and magnetic properties of bifunctional fibers were also investigated. Due to the change of ligands environment, the main excitation peaks blue shifted about 5–8 nm in the bifunctional fibers. Bifunctional fibers exhibited characteristic emission of Tb3+ ions. The polymers have no effect on the fluorescence lifetimes of terbium complexes. All bifunctional fibers were soft ferromagnetic. In addition, mechanical performances of these nanofibers were also studied. The maximum stress, strain corresponding to the maximum stress and elastic modulus of sample PVP-Fe-Tb is the largest, which indicates that the tensile performance of sample PVP-Fe-Tb is the best.

Funder

the Natural Science Foundations of Henan province

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3