Green synthesis of Zinc sulphide (ZnS) nanostructures using S. frutescences plant extract for photocatalytic degradation of dyes and antibiotics

Author:

Munyai Shonisani,Mahlaule-Glory Louisa MORCID,Hintsho-Mbita Nomso CharmaineORCID

Abstract

Abstract Pollutants such as dyes and pharmaceuticals have become a problem in the environment, thus there is a need to find multifunctional materials that are safe and can be used for the removal of various pollutants. In this study, we report on the synthesis of Zinc sulphide (ZnS) nanostructures and their use as photocatalysts for the degradation of dyes and various antibiotics. Fourier transform infrared spectroscopy (FTIR) confirmed the functional groups found in plants and these were linked to the biomolecules identified through Liquid chromatography-mass spectrometry (LCMS). Ultraviolet-visible spectroscopy (UV–vis) and x-ray diffraction (XRD) confirmed the formation of the ZnS nanostructures. Thermal Gravimetric Analysis (TGA) and Brunner Emmet Teller (BET) confirmed the material was thermally stable up until 480 °C and mesoporous in nature, respectively. Scanning electron microscope (SEM) and transmission electron microscope (TEM) showed that the material is spherical in shape and energy dispersive spectroscopy (EDS) further corroborated their formation. From the degradation analysis, 90% of the malachite green (MG) dye could be degraded in 60 min at optimum conditions (pH 6, 25 mg and 10 mg l−1) and the holes were responsible for the degradation. Lastly, when tested against antibiotics, the ZnS material managed to degrade both the sulfisoxazole (SSX) and sulfamethoxazole (SMX). These results showed that the ZnS nanoparticles could be used as a multifunctional material for the degradation of various pollutants.

Funder

DSI/NRF Centre of Excellence

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3