Gas-foaming three-dimensional electrospun nanofiber scaffold improved three-dimensional cartilage regeneration

Author:

Jia Zihao,Liu Yang,Wang Yingying,Peng Shiyuan,Jia PengORCID,Zhang Wei,Tan Xiaoyan

Abstract

Abstract Repairing cartilage defect is always an intractable problem in joint surgery field. Tissue engineering, in the industry, is universally considered as a decent solution for overcoming this challenge. Especially the three-dimensional (3D) scaffolds play a significant role in cartilage repair. Thereinto, the electrospinning has become a very attractive method for the preparation of scaffolds. In recent years. However, these scaffolds are limited in terms of their three-dimensional (3D) applications due to their two-dimensional (2D) structure and pore size which are smaller than a cartilage cellular diameter and thus limit the cellular migration in these structures. To address this issue, this study will present an promising post electrospinning approach that can transform two-dimensional scaffolds into three-dimensional scaffolds via the way of insitu gas foaming within the pores of the nanofiber membranes as the driving force. Our previous study reported that agelatin/polycaprolactone (GT:PCL) ratio of 7:3 might be suitable for the cartilage regeneration [Zheng R, et al The influence of Gelatin/PCL ratio and 3D construct shape of electrospun membranes on cartilage regeneration. Biomaterials 2014;35:152-164]. Therefore, in the present experiment, we chose the above ratio (GT:PCL = 7:3) to realize two types of scaffolds (2D and 3D scaffolds) transition via the gas-foaming technique and investigated whether the three-dimensional structure was more conducive to cartilage regeneration than 2D.The experiment results have revealed that 3D scaffolds can achieve a larger pore size, higher porosity and higher biocompatibility than 2D scaffolds. In addition, both scaffolds which were implanted with chondrocytes all had formed mature cartilage-like tissues after 8 weeks of culturing in rabbits, and the 3D scaffold formed a three-dimensional structure, whereas the 2D scaffold only formed a thin layer of cartilage. As the macroscopic and histological results showed after 12 weeks postoperation, in the 2D scaffold group, the defect was full of fibrillar connective tissue, and as shown by HE staining, obviously there is no staining with Saf-O/FG and toluidine blue on the surface of repaired site. On the contrary, in the 3D scaffold group, homogeneous and mature cartilaginous tissue were found in the defect area. The defect was filled with numerous new chondrocytes, and the histologicalstaining revealed a large amount of regenerated cartilage tissue which was perfectly integrated with normal cartilage tissue. The results distinctly indicated that the 3D scaffold led to better cartilage repair effects than the 2D scaffold. Generally speaking, the current study demonstrated that a gas-foaming three-dimensional electrospun nanofiber scaffold would be a potential platform for cartilage regeneration and might provide a potential treatment option for repairing articular cartilage defects.

Funder

National Natural Science Foundation of China

Opening Foundation of Shandong Provincial Key Laboratory of Plastic and

Project of Scientific Research and Development

Doctoral Research Startup Fund of the First Affiliated Hospital of Xinxiang Medical University

Key R&D Program of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3