Tuning of physical properties of multifunctional Mg-Zn spinel ferrite nanocrystals: a comparative investigations manufactured via conventional ceramic versus green approach sol-gel combustion route

Author:

Khirade Pankaj PORCID,Chavan Apparao R,Somvanshi Sandeep B,Kounsalye Jitendra S,Jadhav K M

Abstract

Abstract This work focused on the impact of synthesis routes on the structural, microstructural, magnetic, electrical and dielectric characteristics of Mg1−x Zn x Fe2O4 (x = 0.00, 0.25, 0.50, 0.75, and 1.00) nanocrystals manufactured via the ceramic and green approach sol–gel route. The powder X-ray diffraction (XRD) analysis reveals that the entire synthesized ferrite solids crystallize in single phase spinel structure. The XRD outcomes highlight the impact of the synthesis routes and Zn2+ replacement on the morphology, crystallite size and structural parameters of magnesium nano-ferrites. The transmission electron microscopy (TEM) images illustrate that the process of synthesis causes extensive lessening of grain and crystallite sizes. The magnetic study reveals that the magnetic properties of magnesium ferrite can be tuned by zinc substitution. The saturation magnetization (Ms), retentivity (Mr), coercive force (Hc) and magneton number diminutions meaningfully with the replacement of diamagnetic Zn2+ ions in Mg-ferrite for both the synthesized systems. The deterioration of magnetic parameters with Zn2+ substitution can be clarified on the base of the random spin canting model. Likewise, the magnetic parameters, enhanced meaningfully for sol-gel derived samples this can be attributed due to decline of crystallite size effect. The DC electric resistivity displays NTCR behaviour like ideal semiconducting materials for all the produced samples. The DC resistivity values of sol-gel produced samples were found to be little bit higher than that of ceramic derived samples. The experimental dielectric constant as a function of frequency behaviour can be elucidated with the support of the heterogeneous model of the polycrystalline structure of ferrites. The dielectric constant and loss tangent decreases with Zn2+ content for both the systems. The dielectric constant enhances for sol-gel derived samples; however, lower values of loss tangent were found. The obtained outcomes can be suitable for multifunctional applications in electronics devices and biomedical field.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3