Effect of hydrogen charging intensities and times on hydrogen embrittlement of Q&P980 steel

Author:

Zhao Linlin,Chen HaoORCID,Zhang Caidong,Wang Guangyao,Lu Shenghai,Chen ZejunORCID,Zhao Aimin

Abstract

Abstract Q&P steel has good development prospects because of its excellent mechanical properties, but with the improvement in strength grade, hydrogen-induced delayed fracture (HIDF) is almost inevitable. In this paper, slow strain rate tensile tests and deep-drawn cup tests of Q&P980 steel under different hydrogen charging strengths and times were carried out, and the microstructure and fracture morphology were analysed by SEM. The results show that the plastic loss of Q&P980 steel was more obvious with increasing hydrogen charging intensity and hydrogen charging time, and a good elongation of 6.63% is still retained under the hydrogen content of 2.134 ppm. The deep-drawn cup samples were placed in acidic distilled water and alkaline and acidic solutions, and only a deep-drawn ratio of 1.9 showed HIDF in the three solutions. Specifically, 12 cracks were observed after soaking in HCl solution for two days. The main reason is that the martensite, austenite island and ferrite phase interface of Q&P980 steel increase stress during deformation and with the transformation-induced plasticity (TRIP) effect, resulting in hydrogen segregation at the phase interface and crack initiation leading to HIDF.

Funder

HBIS Group Co. Ltd. of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3