Reduced graphene oxide-ferrite microcomposites based on petung bamboo (dendrocalamus asper) charcoal and iron sand as lightweight microwave absorbing materials

Author:

Mashuri MashuriORCID,Usman Adam Aswin,Suyatno Suyatno

Abstract

Abstract Reduced graphene oxide-ferrite (rGO/Fe3O4) microcomposites as lightweight microwave absorbing materials has been successfully synthesized from petung bamboo and iron sand by mechanical mixing method at different rGO content (0:1, 1:0, 1:1, 1:2, 1:3, 2:1 and 3:1 wt%). Reduced graphene oxide as dielectric material was synthesized from petung bamboo charcoal using carbonization method and ferrite as magnetic material was synthesized from iron sand using extraction-milling method. Structural characterization by x-ray Fluorosence, Fourier Transform Infrared, Vibrating Sample Magnetometry, x-ray Diffraction, Scanning Electron Microscopy proved that micrometer sized reduced graphene oxide ferrite in the microcomposites was responsible for the ferromagnetic behavior of the composites. The reflection loss of microcomposites measured in the microwave frequency range of 8–12 GHz using a Vector Network Analyzer. The results showed that at the micro scale, rGO had a higher absorption power with maximum reflection loss (RL m ) value of −21.81 dB at matching frequency (f m ) 10.85 GHz compared with Fe3O4 (RL m value of −9.25 dB at f m = 10.60 GHz) at thickness of 1 mm. The rGO/Fe3O4 (2:1 wt%) microcomposites microwave absorber shows the optimum absorption with maximum reflection loss value of −16.51 dB at matching frequency (f m ) 10.74 GHz at thickness of 1 mm. The use of natural materials and the controlled rGO/Fe3O4 microcomposites structure with simple synthesis methods, which the urgent need for developing high performance lightweight microwave abrsorbing materials and are environmentally friendly.

Funder

ITS, Ministry of Education and Culture, Research

Directorate of Research

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3