Enhancing microstructural and mechanical properties of magnesium AZ31 matrix composites through friction stir processing incorporating silicon carbide, titanium carbide, and graphite particles

Author:

K P BoopathirajaORCID,Ramamoorthi R,Hariprasad PORCID,Arockiasamy Felix SahayarajORCID

Abstract

Abstract The present study focuses on investigating the effect of reinforcement on the microstructure and mechanical properties of friction-stir-processed magnesium hybrid composites. The groove width (0, 0.7, 1.1, 1.7, and 2.3 mm) of the Magnesium AZ31 plates was varied by varying the volume fractions (0, 5, 10, 15, and 20 vol%) of Silicon Carbide (SiC), Titanium Carbide (TiC), and Graphite (Gr) particle reinforcements in the hybrid composite. Single-pass processing was suspended using a cylindrical tool shoulder with a rotational speed, transverse velocity, and axial pressure of 1000 rpm, 30 mm min−1, and 6 kN, respectively. The optical micrograph clearly shows that a non-cluster zone (reinforcement particles are uniformly distributed without agglomeration) was identified in the processed region of the least concentrated composites. The results revealed that a peak tensile strength of 293.546 ± 5.12 MPa was attained for the combination of 10 vol% composites, and a Vickers hardness number of 86.53 HV was achieved for the 20 vol.% composites. The fracture surface morphology was analyzed using a Scanning Electron Microscope (SEM). The mode of tensile fractography was ductile for the least composite and transformed into a brittle mode of failure with the addition of reinforcements.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3