Abstract
Abstract
TiN has beneficial physicochemical properties, such as high hardness, good chemical inertness, and good corrosion resistance. TiN has been used for optical filters and protective coatings to exploit these properties. We deposited TiN using atomic layer deposition as a capping layer for a pellicle. We investigated the hydrogen plasma resistance using Raman spectroscopy, transmission electron microscopy, atomic force microscopy, and x-ray photoelectron spectroscopy. As the hydrogen plasma exposure time increased, bonds formed between the TiN film and nitrogen compounds. With long-term exposure, the thickness of the TiN film decreased owing to etching.
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献