Effect of ball-milling process in combination with the addition of carbide microparticles on the microstructure and wear resistance of a Co–Cr–W alloy prepared by powder metallurgy method

Author:

Wang S YORCID,Hou X Y,Wang L,Zhang H Y,Zhang W B,Xia Y P,Sun Y,Zhou Y Z

Abstract

Abstract Co–Cr–W alloys were widely used in the inlet exhaust valve of aeroengine. However, the traditional manufacturing process of Co–Cr–W alloys can not meet the demand for higher comprehensive performance, and an optimum method needs to be developed. Herein, a Co–Cr–W alloy reinforced by exogenous carbides was prepared by the powder metallurgy method. Effect of ball-milling time on the microstructure and wear resistance of the alloy was investigated, and the formation mechanisms of the reinforcing phases were discussed. Results showed that with prolonging the ball-milling time, the uniformity of the reinforcing phases was improved, grain refinement was achieved, the hardness increased, a suitable bonding interface was formed between the matrix and reinforcing phases, and better wear resistance was thus achieved. However, when the ball-milling time increased from 60 h to 70 h, local segregation of the reinforcing phases occurred, the hardness decreased from 64 HRC to 60 HRC, and the friction coefficient increased from 0.53 to 0.58. Based on our experimental results, we proposed two formation mechanisms of the reinforcing phases (carbides): In-situ precipitation from the matrix and in situ autogenic reaction between the elements of the matrix and the added carbides (WC and Cr3C2 particles). Both mechanisms contributed to the formation of M23C6 and M6C carbides. Our results underscore the importance of added reinforcing phases and help to optimize the ball-milling process in preparing the Co–Cr–W alloys.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3