Abstract
Abstract
Recent experiments and density functional tight-binding (DFTB) calculations indicated the nonlinear elastic properties of graphene. However, this nonlinear stress-strain relationship has not been applied to the carbon nanotubes (CNTs) that can be viewed as graphene sheets that have been rolled tubes. In this paper, using the nonlinear stress-strain relationship of graphene, a new Bernoulli-Euler beam model of single-walled carbon nanotubes (SWCNTs) is presented for the first time. The static bending and the first-order mode forced vibrations of SWCNTs are investigated according to the new model. The results indicate that the nonlinear stress-strain relationship has a significant influence on the mechanical properties of SWCNTs.
Funder
Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献