Prediction model of low cycle fatigue life of 304 stainless steel based on genetic algorithm optimized BP neural network

Author:

Cao MengjieORCID,Duan Hongyan,He Hong,Liu Yang,Yue Shunqiang,Zhang Zengwang,Zhao Yingjian

Abstract

Abstract The low cycle fatigue life of 304 stainless steel is an essential basis for safety assessment. Usually, there is a complex nonlinear relationship between fatigue life and influencing factors, which is difficult to be predicted by traditional fatigue life models. Based on this, the BP algorithm and genetic optimization algorithm (GA) for the fatigue life prediction problem of 304 stainless steel is proposed. Based on the existing large amount of test data, the fatigue life of 304 stainless steel material is predicted by using BP and GA-BP learning models. The results show that the GA-BP prediction model is more flexible, the correlation coefficient R reaches 0.98158, the prediction data are within the 2 times error limit and closer to the ideal line, and the model prediction is better.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference55 articles.

1. Quantitative study on the effect of grain size on the behavior of mechanical and fatigue properties of 304 stainless steel;Tang;Lanzhou University of Technology,2021

2. Some problems to be discussed in the analysis and design of pressure vessels;Li;Pressure Vessels,2007

3. Low cycle fatigue performance analysis of 1mm thick 304L stainless steel cold rolled plates;Luo;Journal of Shanxi University of Technology,2019

4. Study of low cycle fatigue fracture characteristics of 304 stainless steel;Liu;Aerospace Manufacturing Technology,2013

5. Cumulative damage in fatigue;Miner;J. Applied Mech.,1945

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3