Abstract
Abstract
Thermal expansion microcapsules (TEMs) are widely used in various fields due to their unique structures. In recent years, TEMs have attracted much attention and have broad market application prospects. In this study, thermally expandable microcapsules with a core–shell structure were prepared by suspension polymerization using acrylonitrile (AN), methyl methacrylate (MMA), and methyl acrylate (MA) as monomers and low-boiling alkane as the core material. Through particle size analysis, morphology test, thermal analysis and other methods, the effects of core material types, single core material and mixed core material, dispersion system on the microcapsule structure, particle size distribution, and expansion properties were compared. Moreover, the core material with a content of 35% can make the expansion ratio of the microcapsules up to 4 times. The expansion performance of the microcapsules with a mixture of isopentane and isooctane (ratio 1:1) as the core material was increased by 27% compared with that of a single core material. In addition, comparing with colloidal SO2/PVP dispersant, the expansion ratio of the microcapsules with magnesium hydroxide as the dispersant was increased by 20%. Finally, the optimized method for preparing thermally expandable microcapsules was obtained.
Funder
the Key Scientific Research Project of Beijing Municipal commission of Education
the BIGC Project
National Natural Science Foundation of China
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献