Preparation and characterization of acrylic resin encapsulated n-dodecanol microcapsule phase change material

Author:

Jiang RuijieORCID,Xu LinglingORCID,Wu NanORCID

Abstract

Abstract Nontoxic, low-cost microcapsule phase change materials (MicroPCMs) were successfully manufactured via suspension polymerization, in which n-dodecanol was employed as the core material and crosslinked polymethyl methacrylate as the wall material. Alkylphenol polyoxyethylene ether (OP-10), polysorbate-20 (Tween-20), sodium salt of styrene-maleic anhydride polymer (SMA), sodium dodecyl sulfonate (SDS), and hexadecyltrimethylammonium chloride (1631) were employed as emulsifiers to investigate the effects of the type and amount of emulsifier on MicroPCMs. In addition, the effects of different types of crosslinking agents on the fabrication of MicroPCMs were investigated. Scanning electron microscopy was used to observe the micro-morphology of MicroPCMs. The chemical structure of the MicroPCMs was detected via Fourier transform infrared spectroscopy. The thermal properties and thermal stability of the MicroPCMs were analyzed using a differential scanning calorimeter and a thermal gravimetric analyzer, respectively. Particle size distributions of the MicroPCMs were measured using a particle size analyzer. The results demonstrate that MicroPCMs with regular morphology were prepared when the mass ratio of the SMA to the oil phase was 3%, and the latent heat and yield of the MicroPCMs were 80.29 J g−1 and 84%, respectively. Furthermore, the MicroPCMs were successfully synthesized using pentaerythritol triacrylate containing the hydroxyl group as the crosslinking agent with an average particle size of 14.18 μm and excellent thermal stability.

Funder

Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3