Effect of WC content on microstructure, hardness, and wear properties of plasma cladded Fe–Cr–C–WC coating

Author:

Yuan Renyue,Bai XueweiORCID,Li Haozhe,Zhang Zhicong,Sun Shijie,Zhai Yankun

Abstract

Abstract The Q235 sample was coated with ball-milled Fe–Cr–C–WC powder using plasma cladding technology, and the influence of tungsten carbide (WC) content on the surface microstructure, hardness, and wear properties of the coated steel was evaluated. The single factor test of optimal WC content was carried out on DML-02BD plasma cladding machine, and the material after cladding was analyzed. The microstructure distribution, elemental composition and phase composition of the coating were observed by MIRA3-XMH scanning electron microscopy. The microhardness of cladding layer can indirectly reflect the properties of cladding layer to a certain extent, which is measured by the Vickers microhardness tester. The wear quality, friction coefficient and wear mark morphology can directly reflect the wear resistance of the test blocks. These are observed by the ring block friction and wear tester and the ultra depth of field microscope, respectively. With an increasing WC content, the microhardness of the cladding layer shows an upward trend. The main hard phases of the cladding layer after adding WC are (Cr, Fe)7C3, (Fe, Ni)23C7, and the other phases are γ-Fe, Fe3W3C, WCandFe2W. After 6 h friction and wear test, the cladding layer with 30%WC showed the best wear resistance. The total wear amount, wear volume, wear rate and friction coefficient were 0.01 g, 4.22 mm3, 2.344 × 10–4 mm3/(N·m), and 0.35, which were 1/10, 1/5, 1/5, and 7/10 of those without WC cladding layer, respectively. It can be concluded that different WC contents affect the surface microstructure and properties of Fe–Cr–C alloy coating treated by plasma cladding technology. At a WC content of 30%, the microstructure and properties of the cladding layer reach the best.

Funder

Education Department of Liaoning

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference27 articles.

1. Process analysis of plasma spray welding co-based self-fluxing superalloy on Q235 steel.;Zhao;Journal of Welding,2017

2. Effect of powder feeding mode on WC particle reinforced fe-based cladding layer;Jin;Surf. Technol.,2016

3. Study on surface coating and wear resistance of mechanical hydraulic parts;Chen;Powder Metallurgy Industry,2020

4. Analysis of wear and solution of bale machinery parts;Yang;Agricultural Machinery Use and Maintenance,2020

5. Study on wear resistance of NiWC spray welding coating in deep loose shovel;Han;Journal of Agricultural University of Hebei,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3