Abstract
Abstract
Fundamental mechanisms governing the erosion and prompt re-deposition of tungsten impurities in tokamak divertors are identified and analyzed to inform the lifetime of tungsten plasma-facing components in ITER and other future devices. Various experiments conducted at DIII-D to benchmark predictive models are presented, leveraging the DiMES removable sample exposure probe capability and the Metal Rings Campaign, in which toroidally symmetric rows of tungsten-coated tiles were installed in the DIII-D divertor. In tokamak divertors, the width of the electric sheath is of the order of the main ion Larmor radius, and a vast majority of sputtered tungsten impurities are typically ionized within the sheath. Therefore, W prompt redeposition is mainly governed by the ratio of the characteristic ionization mean-free path of neutral tungsten to the width of the sheath. In-situ monitoring of the prompt redeposition of tungsten impurities in divertors is demonstrated via the use of WII/WI line ratios and the ionizations/photon (S/XB) method in L-mode discharges. Even with this relatively limited set of emission measurements, net erosion measurements were found to be a consistent upper bound to an analytic scaling based on the ratio of the W ionization length,
λ
iz
,
and the width of the magnetic sheath rather than the ratio of
λ
iz
and the W+ gyro-radius. In the far-scrape-off layer (SOL) of the ITER divertor, however, it is calculated that the measurement of photon emissions associated with the ionization of tungsten impurities up to
W
5
+
may be required. Finally, W deposition patterns on DiMES collector probes, interpreted via DIVIMP-WallDYN modelling, reveal the key roles of progressive W erosion/re-deposition staps and E × B drifts in regulating long-range high-Z material migration.
Funder
Sandia, LLC
DOE
Honeywell International Inc.
U.S. Department of Energy
Office of Science
the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences
National Nuclear Security Administration
DIII-D National Fusion Facility
Subject
Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A tutorial on the micro-trench technique for incident ion angle, material erosion, and impurity deposition measurements at plasma-facing surfaces;Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms;2024-11
2. Managing the heat: In-Vessel Components;Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences;2024-08-26
3. Focus on plasma-facing materials in nuclear fusion reactors;Materials Research Express;2024-04-01
4. Modeling turbulent impurity transport in the SOL of DIII-D with a reduced model;Plasma Physics and Controlled Fusion;2024-03-14