Modulating the ZnO NR shape to enhance the luminescence efficiency for optoelectronic applications

Author:

Bano NORCID,Hussain IORCID,EL-Naggar A M,Albassam A A

Abstract

Abstract It is essential to control the size of zinc oxide (ZnO) nanorods (NRs) for the improvement of tunable optoelectronic applications. In this paper, we present the results of a systematic and extensive study that explored the effect of growth parameters on the morphology and optoelectronic properties of ZnO NRs. We found that the length and width of ZnO NRs can be efficiently tuned by carefully controlling the growth parameters and by modulating the ZnO seed with reduced graphene (rGO). These results could give us a better understanding of the growth behavior of ZnO NRs and could contribute to the control of the morphology of these NRs for nano-device applications. Moreover, the effect of growth parameters on the optoelectronic properties of ZnO NRs was thoroughly investigated by fabricating light-emitting diodes (LEDs) with different morphologies of the ZnO NRs and the correlation between the morphology and the luminescence efficiency of ZnO was established. These investigations illustrate a viable and highly promising approach to enhance the luminescence intensity of ZnO NR-based LEDs by 500 times. The present work will guide researchers in the production of low-temperature, size-controlled, and aligned ZnO NRs for tunable highly luminescent optoelectronic applications.

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3