Author:
Zhang Chufan,Li Ke,Zang Xiaoxian,Ma Fuyuan,Dan Yaping
Abstract
Fabrication of atomic dopant wires at large scale is challenging. We explored the feasibility to fabricate atomic dopant wires by nano-patterning self-assembled dopant carrying molecular monolayers via a resist-free lithographic approach. The resist-free lithography is to use electron beam exposure to decompose hydrocarbon contaminants in vacuum chamber into amorphous carbon that serves as an etching mask for nanopatterning the phosphorus-bearing monolayers. Dopant wires were fabricated in silicon by patterning diethyl vinylphosphonate monolayers into lines with a width ranging from 1 μm down to 8 nm. The dopants were subsequently driven into silicon to form dopant wires by rapid thermal annealing. Electrical measurements show a linear correlation between wire width and conductance, indicating the success of the monolayer patterning process at nanoscale. The dopant wires can be potentially scaled down to atomic scale if the dopant thermal diffusion can be mitigated.
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献