Experimental study of the operating parameters on the performance of a single-stage Stirling cryocooler cooling infrared sensor for space application

Author:

Kharadi Fayaz,A Karthikeyan,Bhojwani Virendra,Dixit Prachi,Kanu Nand Jee,Jain Nidhi

Abstract

Purpose The purpose of this study is to achieve lower and lower temperature as infrared sensors works faster and better used for space application. For getting good quality images from space, the infrared sensors are need to keep in cryogenic temperature. Cooling to cryogenic temperatures is necessary for space-borne sensors used for space applications. Infrared sensors work faster or better at lower temperatures. It is the need for time to achieve lower and lower temperatures. Design/methodology/approach This study presents the investigation of the critical Stirling cryocooler parameters that influence the cold end temperature. In the paper, the design approach, the dimensions gained through thermal analysis, experimental procedure and testing results are discussed. Findings The effect of parameters such as multilayer insulation, helium gas charging pressure, compressor input voltage and cooling load was investigated. The performance of gold-plated and aluminized multilayer insulation is checked. The tests were done with multilayer insulation covering inside and outside the Perspex cover. Practical implications By using aluminized multilayer insulation inside and outside the Perspex cover, the improvement of 16 K in cool-down temperature was achieved. The cryocooler is charged with helium gas. The pressure varies between 14 and 18 bar. The optimum cooling is obtained for 17 bar gas pressure. The piston stroke increased as the compressor voltage increased, resulting in total helium gas compression. The optimum cool-down temperature was attained at 85 V. Originality/value The cryocooler is designed to achieve the cool-down temperature of 2 W cooling load at 100 K. The lowest cool-down temperature recorded was 105 K at a 2 W cooling load. Multilayer insulation is the major item that keeps the thermal radiation from the sun from reaching the copper tip.

Publisher

Emerald

Subject

Aerospace Engineering

Reference25 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3