Lubrication characteristics of the worn slipper in the slipper-swashplate pair

Author:

Wang Haiji,Shi Guanglin

Abstract

Purpose This paper proposes the lubrication characteristics of the worn slipper in the slipper–swashplate pair. The mathematical analysis of lubrication characteristics of slipper with the measured surface roughness distribution is introduced. Based on the results from the test rig, it carries out the result compassion in different operating conditions. Design/methodology/approach This paper introduces the measured surface roughness distribution of new and used slippers and generates the oil film thickness distribution with it. An average flow Reynolds equation of the pressure distribution is introduced too. The experimental results are carried out on a novel adjustable oil film thickness test rig. Findings The surface roughness of the worn slipper enlarges the reacting force and torque only if the oil film thickness is small. When the ratio of oil film thickness to the root mean square of surface roughness is much smaller than 3, the influence of it on torque is obvious. Originality/value Different surface roughness of worn slipper proposed in this paper has an influence on the lubrication characteristics. As the slipper is worn after a period of use, the changed lubrication characteristics should be considered in the slipper design.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference23 articles.

1. Neural network analysis of leakage oil quantity in the design of partially hydrostatic slipper bearings;Industrial Lubrication and Tribology,2004

2. Experimental analysis of frictional power loss of hydrostatic slipper bearings;Industrial Lubrication and Tribology,2009

3. Discussion on the reynolds equation for the slipper bearing modeling in axial piston pumps;Tribology International,2018

4. Performance optimization of grooved slippers for aero hydraulic pumps;Chinese Journal of Aeronautics,2016

5. Film shape research of slipper bearing in axial piston pump based on genetic algorithms;Advanced Materials Research,2011

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3