Leakage and rotordynamic characteristics of labyrinth seal and hole-pattern damping seal with special-shaped 3D cavity

Author:

Zhang Xuan,Jiang Jin-Bo,Peng Xudong,Li Jiyun

Abstract

Purpose The purpose of this paper is to enhance sealing and rotordynamic performance of hole-pattern damping seal (HPDS) and labyrinth seal (LS) by structural innovation and geometrical optimization of special-shaped hole or annular-groove cavity. Design/methodology/approach The unsteady flow was transformed into steady one using moving reference frame method. The full period numerical models of LS and HPDS were established. The influence of special-shaped hole or annular-groove cavity at axial inclined angle on leakage rate and rotordynamic coefficient of these two seals at different whirl angular speed were investigated. Findings The results show that dynamic characteristics of straight-tooth LS are better than that of slanted-tooth LS. Compared to typical straight-hole damping seal, HPDS with windward oblique-hole when axial inclined angle ranges from 50 to 60° has superiority in both leakage and rotordynamic characteristics by considering smaller cross-coupled stiffness coefficient and whirl frequency ratio, larger direct damping coefficient and effective damping coefficient. Originality/value A novel HPDS with special-shaped three-dimensional hole cavity was proposed to enhance leakage and rotordynamic performance. The optimized geometrical structures of HPDS for excellent sealing and rotordynamic characteristics were obtained. Peer review The peer review history for this article is available at: https://publons.com/publon/10.1108/ILT-07-2020-0262/

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference8 articles.

1. Sealing in turbomachinery;Journal of Propulsion and Power,2006

2. Consideration of whirl frequency ratio and effective damping coefficient of seal;Journal of System Design and Dynamics,2010

3. Leakage and rotordynamic performance of T type labyrinth seal;Aerospace Science and Technology,2019

4. Elliptical shape hole-pattern seals performance evaluation using design of experiments technique;Journal of Fluids Engineering,2018

5. Dynamic coefficient analysis of labyrinth seal based on fluent;Fluid Machinery,2008

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3