A systematic approach to manual calibration and validation of building energy simulation

Author:

Tomrukcu Gokce,Kizildag Hazal,Avgan Gizem,Dal Ozlem,Ganic Saglam Nese,Ozdemir Ece,Ashrafian TourajORCID

Abstract

PurposeThis study aims to create an efficient approach to validate building energy simulation models amidst challenges from time-intensive data collection. Emphasizing precision in model calibration through strategic short-term data acquisition, the systematic framework targets critical adjustments using a strategically captured dataset. Leveraging metrics like Mean Bias Error (MBE) and Coefficient of Variation of Root Mean Square Error (CV(RMSE)), this methodology aims to heighten energy efficiency assessment accuracy without lengthy data collection periods.Design/methodology/approachA standalone school and a campus facility were selected as case studies. Field investigations enabled precise energy modeling, emphasizing user-dependent parameters and compliance with standards. Simulation outputs were compared to short-term actual measurements, utilizing MBE and CV(RMSE) metrics, focusing on internal temperature and CO2 levels. Energy bills and consumption data were scrutinized to verify natural gas and electricity usage against uncertain parameters.FindingsDiscrepancies between initial simulations and measurements were observed. Following adjustments, the standalone school 1’s average internal temperature increased from 19.5 °C to 21.3 °C, with MBE and CV(RMSE) aiding validation. Campus facilities exhibited complex variations, addressed by accounting for CO2 levels and occupancy patterns, with similar metrics aiding validation. Revisions in lighting and electrical equipment schedules improved electricity consumption predictions. Verification of natural gas usage and monthly error rate calculations refined the simulation model.Originality/valueThis paper tackles Building Energy Simulation validation challenges due to data scarcity and time constraints. It proposes a strategic, short-term data collection method. It uses MBE and CV(RMSE) metrics for a comprehensive evaluation to ensure reliable energy efficiency predictions without extensive data collection.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3