Vortex force of an impulsively started plate at high angle of attack

Author:

Fu Xiang,Li Gaohua,Wang Fuxin

Abstract

Purpose A quantitative study that can identify the primary aerodynamic forces and relate them to individual vortical structures is lacking. The paper aims to clarify the quantitative relationships between the aerodynamic forces and vortical structures. Design/methodology/approach The various contributions to the aerodynamic forces on the two-dimensional impulsively started plate are investigated from the perspective of the vorticity moment theorem. The angles of attacks are set to 45°, 58.5° and 72°, while the Reynolds number is 10,000 based on the chord length. Compared with the traditional pressure force analysis, this theorem not only tells us the total aerodynamic force during the motion, but also enables us to quantify the forces contributed from the fluid elements with non-zero vorticity. Findings It is found that the time-dependent force behaviors are dominated by the formations and evolutions of these vortical structures. The analysis of the time-averaged forces demonstrates that the lift contributed from the leading edge vortex (LEV) is nearly four times larger than the total lift and the drag contributed from the starting vortex (SV) is almost equal to the total drag when the angle of attack (AoA) increases to 72°, which means the LEV is “lift structure” whereas the SV is “drag structure”. Practical implications The present method provides a better perspective for flow control and drag reduction by relating the forces directly to the individual vorticity structures. Originality/value In this paper, the Vorticity Moment Theory is first used to study the quantitative relationships between the aerodynamic forces and the vortices.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference20 articles.

1. Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers;The Journal of Experimental Biology,2004

2. Unsteady aerodynamic performance of model wings at low Reynolds numbers;Journal of Experimental Biology,1993

3. Wing rotation and the aerodynamic basis of insect flight;Science Science,1999

4. The aerodynamics of hovering insect flight: 5, a vortex theory;Philosophical Transactions of the Royal Society of London Series B-Biological Sciences,1984

5. Leading-edge vortices in insect flight;Nature,1996

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3