Author:
Fernando Nirodha,T.A. Kasun Dilshan,Zhang Hexin (Johnson)
Abstract
Purpose
The Government’s investment in infrastructure projects is considerably high, especially in bridge construction projects. Government authorities must establish an initial forecasted budget to have transparency in transactions. Early cost estimating is challenging for Quantity Surveyors due to incomplete project details at the initial stage and the unavailability of standard cost estimating techniques for bridge projects. To mitigate the difficulties in the traditional preliminary cost estimating methods, there is a requirement to develop a new initial cost estimating model which is accurate, user friendly and straightforward. The research was carried out in Sri Lanka, and this paper aims to develop the artificial neural network (ANN) model for an early cost estimate of concrete bridge systems.
Design/methodology/approach
The construction cost data of 30 concrete bridge projects which are in Sri Lanka constructed within the past ten years were trained and tested to develop an ANN cost model. Backpropagation technique was used to identify the number of hidden layers, iteration and momentum for optimum neural network architectures.
Findings
An ANN cost model was developed, furnishing the best result since it succeeded with around 90% validation accuracy. It created a cost estimation model for the public sector as an accurate, heuristic, flexible and efficient technique.
Originality/value
The research contributes to the current body of knowledge by providing the most accurate early-stage cost estimate for the concrete bridge systems in Sri Lanka. In addition, the research findings would be helpful for stakeholders and policymakers to propose policy recommendations that positively influence the prediction of the most accurate cost estimate for concrete bridge construction projects in Sri Lanka and other developing countries.
Subject
Economics and Econometrics,Finance,Accounting,Business and International Management,Building and Construction
Reference80 articles.
1. Forecasting the cost of the structure of infrastructure projects utilising artificial neural network model (highway projects as a case study);Indian Journal of Science and Technology,2017
2. Development of cost estimation model for residential building;International Journal of Structural and Civil Engineering Research,2017
3. Billington, P.N., Billington, D.P. and Shirley-Smith, H. (2023), “Bridge”, Encyclopedia Britannica, available at: www.britannica.com/technology/bridge-engineering (accessed 29 March 2023).
4. Enhancing the efficiency of infrastructure projects to improve access to finance;Journal of Infrastructure, Policy and Development,2020
5. A cost estimation model for repair bridges based on artificial neural network;American Journal of Applied Sciences,2008
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献