Design methodology for a hybrid part feeding system in lean-based assembly lines

Author:

Karadayi Usta Saliha,Oksuz Mehmet Kursat,Durmusoglu Mehmet Bulent

Abstract

Purpose This paper aims to propose a combined methodology to help decision makers in evaluating and selecting the most effective part feeding system. Design/methodology/approach As a first step of the methodology, a hierarchical clustering analysis is applied to design a kitting or hybrid feeding system. Second, activity-based costing methodology is applied to determine which system is better according to their costs. Besides, sensitivity analysis is implemented to observe the behavior of the system in case of the takt time changes. Findings Using kitting systems purely can lead to problems because of the big and expensive parts in the mixed-model assembly systems. Therefore, the hybrid feeding policy can provide better solutions for such systems. Research limitations/implications A case study is conducted in a company and the most produced product of the company is considered to design the part feeding system. Results indicated that transportation cost has a large proportion on the total cost and the hybrid feeding policy may be a good solution to reduce this cost. Practical implications The paper includes implications for the design of hybrid feeding systems in lean-based assembly lines. The proposed methodology may be a practical tool for decision makers to design and decide on the part feeding policy. Originality/value Kitting design has not been studied yet to the best of the authors’ knowledge. Besides, there is no certain decision methodology indicating which system is better. In this study, different methods are combined as a new methodology with the purpose of industrial decision-making.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3