1. Castillo, P., Rieben, R. and White, D. (2005), “FEMSTER: an object oriented class library of discrete differential forms”, IEEE Antennas and Propagation Society International Symposium. Digest. Held in Conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450), Vol. 31 No. 4, pp. 972‐5, available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=1219397.
2. Donzel, L., Christen, T., Kessler, R., Greuter, F. and Gramespacher, H. (2004), “Silicone composites for HV applications based on microvaristors”, Proceedings of the 8th IEEE International Conference on Solid Dielectrics (ICSD 2004). Toulouse, pp. 403‐6, available at: http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1350376.
3. Egiziano, L., Tucci, V., Petrarca, C. and Vitelli, M. (1999), “A Galerkin model to study the field distribution in electrical components employing nonlinear stress grading materials”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol. 6 No. 6, pp. 765‐73, available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=822012.
4. Entrekin, A. (1999), “Accuracy of MSC/Nastran first and second‐order tetrahedral elements in solid modeling for stress analysis”, available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Accuracy+of+MSC/NASTRAN+First‐ + and+Second‐Order+Tetrahedral+Elements+in+Solid+Modeling+for+Stress+Analysis#0.
5. Jung, M. and Langer, U. (1995), Finite‐elemente‐methode. Eine Einführung für Ingenieurstudenten, Vorlesungsskript Technische Unversität Chemnitz, available at: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Finite‐Elemente‐Methode+‐ + Eine+Einführung+für+Ingenieurstudenten#0.