Implementation of the QoS framework using fog computing to predict COVID-19 disease at early stage

Author:

Singh Prabhdeep,Kaur Rajbir

Abstract

Purpose The purpose of this paper is to provide more accurate structure that allows the estimation of coronavirus (COVID-19) at a very early stage with ultra-low latency. The machine learning algorithms are used to evaluate the past medical details of the patients and forecast COVID-19 positive cases, which can aid in lowering costs and distinctively enhance the standard of treatment at hospitals. Design/methodology/approach In this paper, artificial intelligence (AI) and cloud/fog computing are integrated to strengthen COVID-19 patient prediction. A delay-sensitive efficient framework for the prediction of COVID-19 at an early stage is proposed. A novel similarity measure-based random forest classifier is proposed to increase the efficiency of the framework. Findings The performance of the framework is checked with various quality of service parameters such as delay, network usage, RAM usages and energy consumption, whereas classification accuracy, recall, precision, kappa static and root mean square error is used for the proposed classifier. Results show the effectiveness of the proposed framework. Originality/value AI and cloud/fog computing are integrated to strengthen COVID-19 patient prediction. A novel similarity measure-based random forest classifier with more than 80% accuracy is proposed to increase the efficiency of the framework.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering

Reference31 articles.

1. Detecting regions at risk for spreading covid-19 using existing cellular wireless network functionalities;IEEE Open Journal of Engineering in Medicine and Biology,2020

2. Deep learning and medical image processing for coronavirus (covid-19) pandemic: a survey;Sustainable Cities and Society,2020

3. A pervasive respiratory monitoring sensor for covid-19 pandemic;IEEE Open Journal of Engineering in Medicine and Biology,2020

4. A spring search algorithm applied to engineering optimization problems;Applied Sciences,2020

5. Gaurav Dhiman. Darts game optimizer: a new optimization technique based on darts game;International Journal of Intelligent Systems,2020

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3