Metal bellow hydroforming using additive manufactured die: a case study

Author:

R. Prithvirajan,M. Sugavaneswaran,N. Sathishkumar,G. Arumaikkannu

Abstract

Purpose Custom-designed metal bellows require alternate ways to produce the die to shorten lead time. The purpose of this study is to explore the possibility of using Additive Manufactured (AM) polymer die as direct rapid tool (RT) for metal bellow hydroforming. Design/methodology/approach Finite element analysis (FEA) was used to simulate bellow forming and to evaluate the compatibility of AM die. Fused deposition modelling (FDM) technique is used to fabricate die with Acrylonitrile Butadiene Styrene (ABS) material. To validate, the width of the metal bellow convolutions obtained from the FEA simulation is compared with convolution formed during the experiment. Findings FDM-made die can be used for a short production run of bellow hydroforming. FEA simulation shows that stress developed in some regions of die is less and these regions have potential for material reduction. Use of RT for this particular application is limited by the die material, forming pressure, width, convolution span and material of bellow. This supports the importance of FEA validation of RT before fabrication to evaluate and redesign die for the successful outcome of the tool. Research limitations/implications The given methodology may be followed to design a RT with minimum material consumption for bellow forming application. Whenever there is a change in bellow design or the die material, simulation has to be done to evaluate the capability of the die. As this study was focused on a short production run for manufacturing one or few bellows, the die life is not a significant factor. Originality/value This paper demonstrates about rapid tooling for metal bellow manufacturing using FDM technique for low volume production. Further, FEA is used to identify low stress regions and redesign the die for material reduction before die manufacturing. AM die can be used for developing customized metal bellow for applications such as defense, aerospace, automobiles, etc.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3