Effect of structural hybrid design on mechanical and biological properties of CoCr scaffolds fabricated by selective laser melting

Author:

Özeren Emre,Altan Mirigul

Abstract

Purpose The purpose of this study was to bring a new structural hybrid design approach to improve the mechanical and biological properties of the bone scaffolds fabricated by laser powder bed fusion, selective laser melting (SLM). Design/methodology/approach In designing the hybrid scaffolds, different unit cells were used such as dodecahedron (DCH), grid (G), octet-truss (OCT) with partially dense (PDsl) and fully dense (FDsl) surface layers. After fabrication of scaffolds on SLM machine, compression test and cell viability test were applied to observe the effect of hybrid design on mechanical and biological properties of the scaffolds. Findings It has been observed that designing the scaffold with partially dense or FDsl surfaces did not have a critical effect on the cell viability. On the contrary, the compression strength of scaffold increased from 56  to 100 MPa when the surface layer of the scaffold was designed as FDsl surface instead of partially dense surface. It has also been observed that the scaffold having the highest hybridity (PDsl+G+DCH+OCT) delivered the highest cell viability performance and had a compressive strength slightly higher than that of the scaffolds with single unit cell, PDsl+OCT. Originality/value This study brings a new approach to designing femur bone scaffold for fabricating with SLM. This hybrid design approach, including different unit cells in a single scaffold, covers many requirements of femur bone in terms of mechanical and biological properties.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3