Phase transition of multiple encapsulated PCMs in a U-shaped channel under MHD with ternary nanofluid

Author:

Selimefendigil Fatih,Oztop Hakan F.

Abstract

Purpose Multiple encapsulated phase change materials (PCMs) are used in a wide range of applications, including convective drying, electronic cooling, waste heat recovery and air conditioning. Therefore, it is important to understand the performance of multiple PCMs in channels with flow separation and develop methods to increase their effectiveness. The aim of the study is to analyze the phase transition dynamics of multiple encapsulated PCMs mounted in a U-shaped tube under inclined magnetic field by using ternary nanofluid. Design/methodology/approach The PCMs used in the upper horizontal channel, vertical channel and lower horizontal channel are denoted by M1, M2 and M3. Magnetic field is uniform and inclined while finite element method is used as the solution technique. Triple encapsulated-PCM system study is carried out taking into account different values of Reynolds number (Re, ranges from 300 to 1,000), Hartmann number (Ha ranges from 0 and 60), magnetic field inclination (between 0 and 90) and solid volume fraction of ternary nanofluid (between 0 and 0.03). The dynamic response of the liquid fraction is estimated for each PCM with varying Re, Ha and t using an artificial neural network. Findings It is observed that for PCMs M2 and M3, the influence of Re on the phase transition is more effective. For M2 and M3, entire transition time (t-F) lowers by approximately 47% and 47.5% when Re is increased to its maximum value, whereas it only falls by 10% for M1. The dynamic characteristics of the phase transition are impacted by imposing MGF and varying its strength and inclination. When Ha is raised from Ha = 0 to Ha = 50, the t-F for PCM-M2 (PCM-M3) falls (increases) by around 30% (29%). For PCMs M1, M2 and M3, the phase transition process accelerates by around 20%, 30% and 28% when the solid volume fraction is increased to its maximum value. Originality/value Outcomes of this research is useful for understanding the phase change behavior of multiple PCMs in separated flow and using various methods such as nano-enhanced magnetic field to improve their effectiveness. Research outputs are beneficial for initial design and optimization of using multiple PCMs in diverse energy system technologies, including solar power, waste heat recovery, air conditioning, thermal management and drying.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3