Determining the informativeness of comments: a natural language study of F1000Research open peer review reports

Author:

Rashidi Kianoosh,Sotudeh HajarORCID,Mirzabeigi Mahdieh,Nikseresht AlirezaORCID

Abstract

PurposeSocial comments are rich in information and useful in evaluating, ranking or retrieving different kinds of materials. However, their merits in representing or providing added values to scientific articles have not yet been studied. Therefore, the present study investigates the informativeness of open review reports as a kind of social comments in a scholarly setting.Design/methodology/approachA test collection was built consisting of 100 randomly selected queries, 1,962 reviewed documents and their reviewers' open reports from F1000Research. They were analyzed using natural language techniques. The comments' salient words were compared to the documents' and also to the Medical Subject Headings (MeSH) salient words. The receiver operating characteristic (ROC) curve was used to test the accuracy of the comments in representing their related articles.FindingsThe papers' contents and comments have a considerable number of salient words in common. The comments' salient words are also largely found in the MeSH, signifying their consistency with the knowledge tree and their potential to add some complementary features to their related items. The ROC curves confirm the accuracy of the comments in retrieving their related papers.Originality/valueThis research is the first to reveal the merits of open review reports on scientific papers, in terms of their relatedness to their mother articles, in specific, and to the knowledge tree, in general. They are found informative in not only representing the reviewed papers but also in adding values to the contents of the papers.

Publisher

Emerald

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Reference81 articles.

1. The open science peer review Oath;F1000Research,2014

2. Prediction of rating from comments based on information retrieval and sentiment analysis,2016

3. Closed versus open reviewing of journal manuscripts: how far do comments differ in language use?;Scientometrics,2012

4. Social networks and information retrieval, how are they converging? A survey, a taxonomy and an analysis of social information retrieval approaches and platforms;Information Systems,2016

5. Uses of computational stylometry to determine demographics for online reputation management;Language Engineering for Online Reputation Management,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3