Text recommender system using user's usage patterns

Author:

Soo Kim Yong

Abstract

PurposeThe purpose of this paper is to develop a novel and flexible recommender system based on usage patterns and keyword preferences using collaborative filtering (CF) and content‐based filtering (CBF).Design/methodology/approachThe proposed system analyzes data captured from the navigational and behavioral patterns of users and estimates the popularity and similarity levels of a user's clicked content. Based on this information, content is recommended to each user using recommendation methods such as CF and CBF. To assess the effectiveness of the proposed approach, an empirical study was conducted by constructing an experimental news site.FindingsThe results of the experimental study clearly show that the proposed hybrid method is superior to conventional methods that use only CF or CBF.Practical implicationsThe above findings are based on data captured from a relatively small experimental site, and they require further verification using various actual content sites. A promising area for future research may be the application of the proposed approach to making recommendations in user‐created content environments, such as blog sites and video upload sites, where users can actively participate as both writers and readers.Originality/valueUnlike the most research on recommender systems, this is the first study to analyze user usage patterns and thereby determine appropriate recommendation algorithms for each user. The proposed recommender system provides greater prediction accuracy than conventional systems.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Strategy and Management,Computer Science Applications,Industrial relations,Management Information Systems

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3