Dimensionality and data reduction in telecom churn prediction

Author:

Lin Wei-Chao,Tsai Chih-Fong,Ke Shih-Wen

Abstract

Purpose – Churn prediction is a very important task for successful customer relationship management. In general, churn prediction can be achieved by many data mining techniques. However, during data mining, dimensionality reduction (or feature selection) and data reduction are the two important data preprocessing steps. In particular, the aims of feature selection and data reduction are to filter out irrelevant features and noisy data samples, respectively. The purpose of this paper, performing these data preprocessing tasks, is to make the mining algorithm produce good quality mining results. Design/methodology/approach – Based on a real telecom customer churn data set, seven different preprocessed data sets based on performing feature selection and data reduction by different priorities are used to train the artificial neural network as the churn prediction model. Findings – The results show that performing data reduction first by self-organizing maps and feature selection second by principal component analysis can allow the prediction model to provide the highest prediction accuracy. In addition, this priority allows the prediction model for more efficient learning since 66 and 62 percent of the original features and data samples are reduced, respectively. Originality/value – The contribution of this paper is to understand the better procedure of performing the two important data preprocessing steps for telecom churn prediction.

Publisher

Emerald

Subject

Computer Science (miscellaneous),Social Sciences (miscellaneous),Theoretical Computer Science,Control and Systems Engineering,Engineering (miscellaneous)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3