AI federated learning based improvised random Forest classifier with error reduction mechanism for skewed data sets

Author:

More Anjali,Rana Dipti

Abstract

Purpose Referred data set produces reliable information about the network flows and common attacks meeting with real-world criteria. Accordingly, this study aims to focus on the use of imbalanced intrusion detection benchmark knowledge discovery in database (KDD) data set. KDD data set is most preferably used by many researchers for experimentation and analysis. The proposed algorithm improvised random forest classification with error tuning factors (IRFCETF) deals with experimentation on KDD data set and evaluates the performance of a complete set of network traffic features through IRFCETF. Design/methodology/approach In the current era of applications, the attention of researchers is immersed by a diverse number of existing time applications that deals with imbalanced data classification (ImDC). Real-time application areas, artificial intelligence (AI), Industrial Internet of Things (IIoT), etc. are dealing ImDC undergo with diverted classification performance due to skewed data distribution (SkDD). There are numerous application areas that deal with SkDD. Many of the data applications in AI and IIoT face the diverted data classification rate in SkDD. In recent advancements, there is an exponential expansion in the volume of computer network data and related application developments. Intrusion detection is one of the demanding applications of ImDC. The proposed study focusses on imbalanced intrusion benchmark data set, KDD data set and other benchmark data set with the proposed IRFCETF approach. IRFCETF justifies the enriched classification performance on imbalanced data set over the existing approach. The purpose of this work is to review imbalanced data applications in numerous application areas including AI and IIoT and tuning the performance with respect to principal component analysis. This study also focusses on the out-of-bag error performance-tuning factor. Findings Experimental results on KDD data set shows that proposed algorithm gives enriched performance. For referred intrusion detection data set, IRFCETF classification accuracy is 99.57% and error rate is 0.43%. Research limitations/implications This research work extended for further improvements in classification techniques with multiple correspondence analysis (MCA); hierarchical MCA can be focussed with the use of classification models for wide range of skewed data sets. Practical implications The metrics enhancement is measurable and helpful in dealing with intrusion detection systems–related imbalanced applications in current application domains such as security, AI and IIoT digitization. Analytical results show improvised metrics of the proposed approach than other traditional machine learning algorithms. Thus, error-tuning parameter creates a measurable impact on classification accuracy is justified with the proposed IRFCETF. Social implications Proposed algorithm is useful in numerous IIoT applications such as health care, machinery automation etc. Originality/value This research work addressed classification metric enhancement approach IRFCETF. The proposed method yields a test set categorization for each case with error reduction mechanism.

Publisher

Emerald

Subject

General Computer Science,Theoretical Computer Science

Reference61 articles.

1. An improved intrusion detection approach using synthetic minority over-sampling technique and deep belief network;Series Frontiers in Artificial Intelligence and Applications,1994

2. KEEL data-mining software tool: data set repository, integration of algorithms and experimental analysis framework;Journal of Multiple-Valued Logic and Soft Computing,2016

3. A comparison study between different sampling strategies for intrusion detection system of active learning model;Journal of Computer Science,2019

4. Anomaly-based intrusion detection systems in IoT using deep learning: a systematic literature review;Applied Sciences,2021

5. Intrusion detection systems: a survey and taxonomy,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3