A double-end-beam based infrared device fabricated using CMOS-MEMS process

Author:

Lei Cheng,Mao Haiyang,Yang Yudong,Ou Wen,Xue Chenyang,Yao Zong,Ming Anjie,Wang Weibing,Wang Ling,Hu Jiandong,Xiong Jijun

Abstract

Purpose Thermopile infrared (IR) detectors are one of the most important IR devices. Considering that the surface area of conventional four-end-beam (FEB)-based thermopile devices cannot be effectively used and the performance of this type of devices is relatively low, this paper aims to present a double-end-beam (DEB)-based thermopile device with high duty cycle and performance. The paper aims to discuss these issues. Design/methodology/approach Numerical analysis was conducted to show the advantages of the DEB-based thermopile devices. Findings Structural size of the DEB-based thermopiles may be further scaled down and maintain relatively higher responsivity and detectivity when compared with the FEB-based thermopiles. The authors characterized the thermoelectric properties of the device proposed in this paper, which achieves a responsivity of 1,151.14 V/W, a detectivity of 4.15 × 108 cm Hz1/2/W and a response time of 14.46 ms sensor based on DEB structure. Orginality/value The paper proposed a micro electro mechanical systems (MEMS) thermopile infrared sensor based on double-end-beam structure.

Publisher

Emerald

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering

Reference17 articles.

1. A bulk micromachined silicon thermopile with high sensitivity;Sensors and Actuators A: Physical,2003

2. Characterization of thermopile based on complementary metal-oxide semiconductor materials and post CMOS micromachining;Japanese Journal of Applied Physics,2002

3. Complete analytical modeling and analysis of micromachined thermoelectric uncooled IR sensors;Sensors and Actuators A: Physical,2005

4. Sensor system for indoor air Monitoring using semiconducting metal oxides and IR-absorption;Sensors & Actuators, B: Chemical,2001

5. CMOS-compatible 8 × 2 thermopile array;Sensors and Actuators A: Physical,2010

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3