Steady state and dynamic performance of self-excited induction generator using FACTS controller and teaching learning-based optimization algorithm

Author:

Elkholy Mahmoud M.

Abstract

Purpose The paper aims to present an application of teaching learning-based optimization (TLBO) algorithm and static Var compensator (SVC) to improve the steady state and dynamic performance of self-excited induction generators (SEIG). Design/methodology/approach The TLBO algorithm is applied to generate the optimal capacitance to maintain rated voltage with different types of prime mover. For a constant speed prime mover, the TLBO algorithm attains the optimal capacitance to have rated load voltage at different loading conditions. In the case of variable speed prime mover, the TLBO methodology is used to obtain the optimal capacitance and prime mover speed to have rated load voltage and frequency. The SVC of fixed capacitor and controlled reactor is used to have a fine tune in capacitance value and control the reactive power. The parameters of SVC are obtained using the TLBO algorithm. Findings The whole system of three-phase induction generator and SVC are established under MatLab/Simulink environment. The performance of the SEIG is demonstrated on two different ratings (i.e. 7.5 kW and 1.5 kW) using the TLBO algorithm and SVC. An experimental setup is built-up using a 1.5 kW three-phase induction machine to confirm the theoretical analysis. The TLBO results are matched with other meta heuristic optimization techniques. Originality/value The paper presents an application of the meta-heuristic algorithms and SVC to analysis the steady state and dynamic performance of SEIG with optimal performance.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference37 articles.

1. Terminal voltage regulation characteristics by static var compensator for a three-phase self-excited induction generator;IEEE Transactions on Industry Applications,2004

2. Small-scale wind turbine coupled single-phase self-excited induction generator with svc for isolated renewable energy utilization,2003

3. Capacitance requirement for self excited induction generator;IEE Proceedings B Electric Power Applications,1990

4. Control shunt capacitor self-excited induction generator;IEEE Transactions on Energy Conversion,1998

5. Congestion management in deregulated power system using hybrid cat-firefly algorithm with TCSC and SVC FACTS devices;COMPEL - the International Journal for Computation and Mathematics in Electrical and Electronic Engineering,2016

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3