Moore-Penrose pseudo-inverse and artificial neural network modeling in performance prediction of switched reluctance machine

Author:

Ferreira Mamede Ana Camila,Camacho José Roberto,Araújo Rui Esteves,Peretta Igor Santos

Abstract

Purpose The purpose of this paper is to present the Moore-Penrose pseudoinverse (PI) modeling and compare with artificial neural network (ANN) modeling for switched reluctance machine (SRM) performance. Design/methodology/approach In a design of an SRM, there are a number of parameters that are chosen empirically inside a certain interval, therefore, to find an optimal geometry it is necessary to define a good model for SRM. The proposed modeling uses the Moore-Penrose PI for the resolution of linear systems and finite element simulation data. To attest to the quality of PI modeling, a model using ANN is established and the two models are compared with the values determined by simulations of finite elements. Findings The proposed PI model showed better accuracy, generalization capacity and lower computational cost than the ANN model. Originality/value The proposed approach can be applied to any problem as long as experimental/computational results can be obtained and will deliver the best approximation model to the available data set.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference47 articles.

1. Magnetic field analysis of a switched reluctance motor using a two dimensional finite element model;IEEE Transactions on Magnetics,1985

2. Artificial neural network modeling of synchronous reluctance motor,2011

3. The Moore–Penrose pseudoinverse: a tutorial review of the theory;Brazilian Journal of Physics,2011

4. Geometry design of switched reluctance motor to reduce the torque ripple by finite element method and sensitive analysis;Journal of Electric Power & Energy Conversion Systems,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Intelligent Model Predictive Control for Boiler Temperature;Automatic Control and Computer Sciences;2021-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3