Convolutional neural network for fast adaptive beamforming of phased array weather radar

Author:

Sallam Tarek

Abstract

Purpose The purpose of this paper is to present a deep-learning-based beamforming method for phased array weather radars, especially whose antenna arrays are equipped with large number of elements, for fast and accurate detection of weather observations. Design/methodology/approach The beamforming weights are computed by a convolutional neural network (CNN), which is trained with input–output pairs obtained from the Wiener solution. Findings To validate the robustness of the CNN-based beamformer, it is compared with the traditional beamforming methods, namely, Fourier (FR) beamforming and Capon beamforming. Moreover, the CNN is compared with a radial basis function neural network (RBFNN) which is a shallow type of neural network. It is shown that the CNN method has an excellent performance in radar signal simulations compared to the other methods. In addition to simulations, the robustness of the CNN beamformer is further validated by using real weather data collected by the phased array radar at Osaka University (PAR@OU) and compared to, besides the FR and RBFNN methods, the minimum mean square error beamforming method. It is shown that the CNN has the ability to rapidly and accurately detect the reflectivity of the PAR@OU with even less clutter level in comparison to the other methods. Originality/value Motivated by the inherit advantages of the CNN, this paper proposes the development of a CNN-based approach to the beamforming of PAR using both simulated and real data. In this paper, the CNN is trained on the optimum weights of Wiener solution. In simulations, it is applied on a large 32 × 32 planar phased array antenna. Moreover, it is operated on real data collected by the PAR@OU.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Reference27 articles.

1. Statistical properties of dual-polarized radar signals,1986

2. A fast neural beamformer for antenna arrays,2002

3. Look closer to see better: recurrent attention convolutional neural network for fine-grained image recognition,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Review of: Deep Learning (DL) for Beamforming Array (BFA) Antenna;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3