Control simulation of PMSM traction system of high speed train when passing neutral section

Author:

Huang Xinxing,Yao Yihua,Lu Qinfen,Huang Xiaoyan,Fang Youtong

Abstract

Purpose – In electric system of high-speed trains, neutral sections are set to balance the three-phase load. When passing neutral sections, the train should detach from the power supply for a short time. To permanent magnet synchronous motors (PMSMs) traction system, the voltage of DC link will increase quickly due to the back-EMF of PMSM during this time. Although the energy consumption braking method can be adopted to consume the feedback energy. It not only wastes energy, but also causes more speed drop of the train. The paper aims to discuss these issues. Design/methodology/approach – In order to get better performance when the train is under passing neutral section condition, a suitable control method is proposed, in which the torque command is set to zero and d-axis current order remains unchanged during passing neutral section. Based on a co-simulation model, the influences of this method on the PMSMs traction system are compared with that of traditional method, which is used in induction motors traction system. This model combines both control strategy and finite element model of motor, which can take the effects of magnetic saturation and power loss into consideration. Findings – In PMSMs traction system, PMSMs work as generators during neutral section, and charge to DC bus, which may cause over-voltage damage. Moreover, there would be strong torque shock at the moment of power cut-off. It is finally found that, with the suitable control method, the high-speed train can pass the neutral section with less speed drop, less torque shock and little DC link voltage rise. Originality/value – The control method proposed in this paper is easier to achieve and gets a better performance of PMSMs traction system in high-speed train compared with the traditional method. Furthermore, the co-simulation model is much closer to reality than the analytical model.

Publisher

Emerald

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computational Theory and Mathematics,Computer Science Applications

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Scheme Design of Photovoltaic Access to the Flexible Traction Power Supply Substation;2024 IEEE 10th International Power Electronics and Motion Control Conference (IPEMC2024-ECCE Asia);2024-05-17

2. Scheme Design and Optimization of Photovoltaic Access to Advanced Traction Power Substation;2022 IEEE 17th Conference on Industrial Electronics and Applications (ICIEA);2022-12-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3