Investigation on the elasto-plastic constitutive equation of parts fabricated by fused deposition modeling

Author:

Xia Yang,Xu Ke,Zheng Guojun,Zou Rui,Li Baojun,Hu Ping

Abstract

Purpose The strength of printed parts by application of fused deposition modeling (FDM) has been broadly studied through experimental methods. However, constitutive behaviors of the printed parts in theory are still unclear. Therefore, this paper aims to focus on building an elasto-plastic model of the printed parts to reveal the constitutive behavior. Design/methodology/approach An elasto-plastic constitutive model that considers anisotropic characteristics is proposed. Tensile tests are performed for parameter identification by using different samples with varying printing angles. Finally, the constitutive model is completed and applied to the numerical analysis of a tensile procedure. Findings The experimental study indicated that the anisotropic characteristics are significant for elastic modulus and strength of printed parts. The polar anisotropic model is suitable for describing the anisotropic behavior of parts during the elastic deformation. The Hill model is suitable to describe the yield property. The elastic modulus and yield point of parts printed in any specific orientation can be calculated using the proposed constitutive model. Originality/value A theoretical model has been developed to describe the constitutive behavior of FDM printed part. This model can precisely describe the elastic behavior and yield point of parts printed with various orientations. This model can be applied to the finite element simulation of printed structures.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference28 articles.

1. Anisotropic tensile failure model of rapid prototyping parts - fused deposition modeling;International Journal of Modern Physics B,2003

2. Experimental optimization of fused deposition modelling processing parameters: a design-for-manufacturing approach;Procedia Manufacturing,2017

3. Mechanical characterization of parts fabricated using fused deposition modeling;Rapid Prototyping Journal,2003

4. The yield behaviour of oriented polyethylene terephthalate;Philosophical Magazine,1968

5. A yield criterion for anisotropic and pressure dependent solids such as oriented polymers;Journal of Materials Science,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3