Author:
Xia Yang,Xu Ke,Zheng Guojun,Zou Rui,Li Baojun,Hu Ping
Abstract
Purpose
The strength of printed parts by application of fused deposition modeling (FDM) has been broadly studied through experimental methods. However, constitutive behaviors of the printed parts in theory are still unclear. Therefore, this paper aims to focus on building an elasto-plastic model of the printed parts to reveal the constitutive behavior.
Design/methodology/approach
An elasto-plastic constitutive model that considers anisotropic characteristics is proposed. Tensile tests are performed for parameter identification by using different samples with varying printing angles. Finally, the constitutive model is completed and applied to the numerical analysis of a tensile procedure.
Findings
The experimental study indicated that the anisotropic characteristics are significant for elastic modulus and strength of printed parts. The polar anisotropic model is suitable for describing the anisotropic behavior of parts during the elastic deformation. The Hill model is suitable to describe the yield property. The elastic modulus and yield point of parts printed in any specific orientation can be calculated using the proposed constitutive model.
Originality/value
A theoretical model has been developed to describe the constitutive behavior of FDM printed part. This model can precisely describe the elastic behavior and yield point of parts printed with various orientations. This model can be applied to the finite element simulation of printed structures.
Subject
Industrial and Manufacturing Engineering,Mechanical Engineering
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献