A multigrid method for the compressible Navier—Stokes equations coupled to the k—ε turbulence equations

Author:

Steelant J.,Dick E.

Abstract

The steady compressible Navier—Stokes equations coupled to the k—ε turbulence equations are discretized within a vertex‐centered finite volume formulation. The convective fluxes are obtained by the polynomial flux‐difference splitting upwind method. The first order accurate part results directly from the splitting. The second order part is obtained by the flux‐extrapolation technique using the minmod limiter. The diffusive fluxes are discretized in the central way and are split into a normal and a tangential contribution. The first order accurate part of the convective fluxes together with the normal contribution of the diffusive fluxes form a positive system which allows solution by classical relaxation methods. The source terms in the low‐Reynolds k‐ε equations are grouped into positive and negative terms. The linearized negative source terms are added to the positive system to increase the diagonal dominance. The resulting positive system forms the left hand side of the equations. The remaining terms are put in the right hand side. A multigrid method based on successive relaxation, full weighting, bilinear interpolation and W‐cycle is used. The multigrid method itself acts on the left hand side of the equations. The right hand side is updated in a defect correction cycle.

Publisher

Emerald

Subject

Applied Mathematics,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3