Ontological model for the acoustic management in a smart environment

Author:

Santiago Gabriela,Aguilar JoseORCID

Abstract

Purpose The Reflective Middleware for Acoustic Management (ReM-AM), based on the Middleware for Cloud Learning Environments (AmICL), aims to improve the interaction between users and agents in a Smart Environment (SE) using acoustic services, in order to consider the unpredictable situations due to the sounds and vibrations. The middleware allows observing, analyzing, modifying and interacting in every state of a SE from the acoustics. This work details an extension of the ReM-AM using the ontology-driven architecture (ODA) paradigm for acoustic management. Design/methodology/approach This work details an extension of the ReM-AM using the ontology-driven architecture (ODA) paradigm for acoustic management. In this paper are defined the different domains of knowledge required for the management of the sounds in SEs, which are modeled using ontologies. Findings This work proposes an acoustics and sound ontology, a service-oriented architecture (SOA) ontology, and a data analytics and autonomic computing ontology, which work together. Finally, the paper presents three case studies in the context of smart workplace (SWP), ambient-assisted living (AAL) and Smart Cities (SC). Research limitations/implications Future works will be based on the development of algorithms for classification and analysis of sound events, to help with emotion recognition not only from speech but also from random and separate sound events. Also, other works will be about the definition of the implementation requirements, and the definition of the real context modeling requirements to develop a real prototype. Practical implications In the case studies is possible to observe the flexibility that the ReM-AM middleware based on the ODA paradigm has by being aware of different contexts and acquire information of each, using this information to adapt itself to the environment and improve it using the autonomic cycles. To achieve this, the middleware integrates the classes and relations in its ontologies naturally in the autonomic cycles. Originality/value The main contribution of this work is the description of the ontologies required for future works about acoustic management in SE, considering that what has been studied by other works is the utilization of ontologies for sound event recognition but not have been expanded like knowledge source in an SE middleware. Specifically, this paper presents the theoretical framework of this work composed of the AmICL middleware, ReM-AM middleware and the ODA paradigm.

Publisher

Emerald

Subject

Computer Science Applications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3