A novel predefined performance barrier function based adaptive sliding mode control method for RLV under mismatched disturbance

Author:

Wang Mingze,Yang Yuhe,Bai Yuliang

Abstract

Purpose This paper aims to present a novel adaptive sliding mode control (ASMC) method based on the predefined performance barrier function for reusable launch vehicle under attitude constraints and mismatched disturbances. Design/methodology/approach A novel ASMC based on barrier function is adopted to deal with matched and mismatched disturbances. The upper bounds of the disturbances are not required to be known in advance. Meanwhile, a predefined performance function (PPF) with prescribed convergence time is used to adjust the boundary of the barrier function. The transient performance, including the overshoot, convergence rate and settling time, as well as the steady-state performance of the attitude tracking error are retained in the predetermined region under the barrier function and PPF. The stability of the proposed control method is analyzed via Lyapunov method. Findings In contrast to conventional adaptive back-stepping methods, the proposed method is comparatively simple and effective which does not need to disassemble the control system into multiple first-order systems. The proposed barrier function based on PPF can adjust not only the switching gain in an adaptive way but also the convergence time and steady-state error. And the efficiency of the proposed method is illustrated by conducting numerical simulations. Originality/value A novel barrier function based ASMC method is proposed to fit in the amplitude of the mismatched and matched disturbances. The transient and steady-state performance of attitude tracking error can be selected as prior control parameters.

Publisher

Emerald

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3