3D printing with moondust

Author:

Goulas Athanasios,Friel Ross J.

Abstract

Purpose The purpose of this paper is to investigate the effect of the main process parameters of laser melting (LM) type additive manufacturing (AM) on multi-layered structures manufactured from JSC-1A Lunar regolith (Moondust) simulant powder. Design/methodology/approach Laser diffraction technology was used to analyse and confirm the simulant powder material particle sizes and distribution. Geometrical shapes were then manufactured on a Realizer SLM™ 100 using the simulant powder. The laser-processed samples were analysed via scanning electron microscopy to evaluate surface and internal morphologies, X-ray fluorescence spectroscopy to analyse the chemical composition after processing, and the samples were mechanically investigated via Vickers micro-hardness testing. Findings A combination of process parameters resulting in an energy density value of 1.011 J/mm2 allowed the successful production of components directly from Lunar regolith simulant. An internal relative porosity of 40.8 per cent, material hardness of 670 ± 11 HV and a dimensional accuracy of 99.8 per cent were observed in the fabricated samples. Originality/value This research paper is investigating the novel application of a powder bed fusion AM process category as a potential on-site manufacturing approach for manufacturing structures/components out of Lunar regolith (Moondust). It was shown that this AM process category has the capability to directly manufacture multi-layered parts out of Lunar regolith, which has potential applicability to future moon colonization.

Publisher

Emerald

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference22 articles.

1. The manufacturing of hard tools from metallic powders by selective laser melting;Journal of Materials Processing Technology,2001

2. High-temperature microwave dielectric properties and processing of JSC-1AC Lunar Simulant;Journal of Aerospace Engineering,2013

3. Experimental simulation of tensile behavior of lunar soil simulant JSC-1;Materials Science and Engineering A,2008

4. Experimental design approach to optimize selective laser melting of martensitic 17-4 PH powder: part I – single laser tracks and first layer;Rapid Prototyping Journal,2012

5. First demonstration on direct laser fabrication of lunar regolith parts;Rapid Prototyping Journal,2010

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3